èßäÉçÇøAPP

Dr. Brian Dzwonkowski

Dr. Brian Dzwonkowski

Associate Professor,
Marine Sciences

Bio

  • Associate Professor, èßäÉçÇøAPP
  • Senior Marine Scientist II, Dauphin Island Sea Lab
  • Ph.D. 2009, University of Delaware

Emphasis: coastal circulation and across-shelf exchange processes, estuarine circulation and exchange processes, physical-biological coupling in the marine environment, and ocean observing systems. 


Research Interests

I am interested in physical processes that influence three-dimensional transport in the coastal ocean as well as how this transport impacts marine ecosystems. Circulation and transport processes on coastal shelves and in estuaries provide a pathway for mass property and material exchange, which can have a critical impact on the state of a marine system. This is a challenging (but very interesting) region to study as a result of there being a broad scope of interacting forcing functions that operate on a wide range of temporal and spatial scales in conjunction with an irregular physical environment (i.e. bathymetry and coastal geography). This results in complex flow fields. As such, my research has focused on improving the understanding of the flow field and its associated response to forcing functions at a range of temporal and spatial scales. By examining estuarine and coastal circulation, I hope to provide a more complete understanding of the processes that dictate the origin, fate, and residence time of material in the coastal ocean. Another aspect of my research involves linking these physical processes to biological aspects of marine system ecosystems. As systems becoming more strongly influenced by anthropogenic impacts, identifying and understanding environmental controls over marine life cycles is essential to elucidating the inter-annual variability that characterizes biological systems. Through my research efforts, I have also developed a keen awareness of the need to acquire high resolution data on estuarine and coastal physical processes due to the importance of these regions’ ecosystems and their relatively sensitive nature. As such, coastal ocean observing systems provide a critical tool in the efforts of understanding the variability in these systems by providing unprecedented temporal and spatial views of coastal currents and hydrographic conditions. The continued maintenance and expansion of these observing systems require both operational and scientific justification. Thus, my research focuses on demonstrating new science based on the data provided from these observing systems.


Publications

  • Axler, K.E., S. Sponaugle, C. Briseño-Avena, F. Hernandez, S. Warner, B. Dzwonkowski, S. Dykstra* and R. Cowen. Variability in fine-scale distributions and predator-prey relationships of larval fishes during a high discharge event in the northern Gulf of Mexico. Marine Ecology Progress Series. doi: https://doi.org/10.3354/meps13397. (Accepted)

  • Cole, S.M., K.M. Dorgan, W. Walton, B. Dzwonkowski and J. Coogan*. Seasonal and spatial patterns of mudblister worm Polydora websteri infestation of farmed oysters in the northern Gulf of Mexico. Aquaculture Environment Interactions. 12, 297-314.

  • Greer, A.T., A.D. Boyette, M.K. Cambazoglu, V.J. Cruz, B. Dzwonkowski, L.M. Chiaverano, C. Pan, S. Dykstra*, C. Briseño-Avena, R.K. Cowen, and J.D. Wiggert. Contrasting fine-scale distributional patterns of zooplankton driven by the formation of a diatom-dominated thin layer. Limnology and Oceanography. 1-23. doi: 10.1002/lno.11450.

  • Coogan*, J., B. Dzwonkowski, K. Park and B. Webb. Observations of restratification after a wind mixing event in a shallow highly stratified estuary. Estuaries and Coasts. 43(2) 272-285. doi.org/10.1007/s12237-019-00689-w.

  • Dykstra*, S.L. and B. Dzwonkowski. The propagation of fluvial flood waves through a backwater-estuarine environment. Water Resources Research. 56(2). doi.org/10.1029/2019WR025743.

  • Coogan, J., B. Dzwonkowski, and J. Lehrter. Effects of coastal upwelling and downwelling on hydrographic variability and dissolved oxygen in Mobile Bay. Journal of Geophysical Research, 124(2), 791-806. doi.org/10.1029/2018JC014592

  • Lee, J., B. Webb, B. Dzwonkowski, A. Valle-Levinson and J. Lee. Characteristics of exchange flows in a multiple-inlet microtidal-estuary: Mobile Bay, Alabama. Journal of Marine Systems. 191:38-50. doi.org/10.1016/j.jmarsys.2018.12.004.

See More